5 research outputs found

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    Full text link

    The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma

    No full text
    Abstract Background Apoptosis is a critical biological phenomenon, executed under the guidance of the Apoptotic Machinery (AM), which allows the physiologic elimination of terminally differentiated, senescent or diseased cells. Because of its relevance to BioMedicine, we have sought to obtain a detailed characterization of AM Omics in Homo sapiens, namely its Genomics and Evolution, Transcriptomics, Proteomics, Interactomics, Oncogenomics, and Pharmacogenomics. Methods This project exploited the methodology commonly used in Computational Biology (i.e., mining of many omics databases of the web) as well as the High Throughput biomolecular analytical techniques. Results In Homo sapiens AM is comprised of 342 protein-encoding genes (possessing either anti- or pro-apoptotic activity, or a regulatory function) and 110 MIR-encoding genes targeting them: some have a critical role within the system (core AM nodes), others perform tissue-, pathway-, or disease-specific functions (peripheral AM nodes). By overlapping the cancer type-specific AM mutation map in the fourteen most frequent cancers in western societies (breast, colon, kidney, leukaemia, liver, lung, neuroblastoma, ovary, pancreas, prostate, skin, stomach, thyroid, and uterus) to their transcriptome, proteome and interactome in the same tumour type, we have identified the most prominent AM molecular alterations within each class. The comparison of the fourteen mutated AM networks (both protein- as MIR-based) has allowed us to pinpoint the hubs with a general and critical role in tumour development and, conversely, in cell physiology: in particular, we found that some of these had already been used as targets for pharmacological anticancer therapy. For a better understanding of the relationship between AM molecular alterations and pharmacological induction of apoptosis in cancer, we examined the expression of AM genes in K562 and SH-SY5Y after anticancer treatment. Conclusion We believe that our data on the Apoptotic Machinery will lead to the identification of new cancer genes and to the discovery of new biomarkers, which could then be used to profile cancers for diagnostic purposes and to pinpoint new targets for pharmacological therapy. This approach could pave the way for future studies and applications in molecular and clinical Medicine with important perspectives both for Oncology as for Regenerative Medicine.</p

    Expression profile and specific network features of the apoptotic machinery explain relapse of acute myeloid leukemia after chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>According to the different sensitivity of their bone marrow CD34+ cells to <it>in vitro </it>treatment with Etoposide or Mafosfamide, Acute Myeloid Leukaemia (AML) patients in apparent complete remission (CR) after chemotherapy induction may be classified into three groups: (i) normally responsive; (ii) chemoresistant; (iii) highly chemosensitive. This inversely correlates with <it>in vivo </it>CD34+ mobilization and, interestingly, also with the prognosis of the disease: patients showing a good mobilizing activity are resistant to chemotherapy and subject to significantly higher rates of Minimal Residual Disease (MRD) and relapse than the others. Based on its known role in patients' response to chemotherapy, we hypothesized an involvement of the Apoptotic Machinery (AM) in these phenotypic features.</p> <p>Methods</p> <p>To investigate the molecular bases of the differential chemosensitivity of bone marrow hematopoietic stem cells (HSC) in CR AML patients, and the relationship between chemosensitivity, mobilizing activity and relapse rates, we analyzed their AM expression profile by performing Real Time RT-PCR of 84 AM genes in CD34+ pools from the two extreme classes of patients (i.e., chemoresistant and highly chemosensitive), and compared them with normal controls.</p> <p>Results</p> <p>The AM expression profiles of patients highlighted features that could satisfactorily explain their <it>in vitro </it>chemoresponsive phenotype: specifically, in chemoresistant patients we detected up regulation of antiapoptotic BIRC genes and down regulation of proapoptotic APAF1, FAS, FASL, TNFRSF25. Interestingly, our analysis of the AM network showed that the dysregulated genes in these patients are characterized by high network centrality (i.e., high values of betweenness, closeness, radiality, stress) and high involvement in drug response.</p> <p>Conclusions</p> <p>AM genes represent critical nodes for the proper execution of cell death following pharmacological induction in patients. We propose that their dysregulation (either due to inborn or <it>de novo </it>genomic mutations selected by treatment) could cause a relapse in apparent CR AML patients. Based on this, AM profiling before chemotherapy and transplantation could identify patients with a predisposing genotype to MRD and relapse: accordingly, they should undergo a different, specifically tailored, therapeutic regimen and should be carefully checked during the post-treatment period.</p
    corecore